Polynomials in Matlab

o — Polynomials

e f{X)=ax"+a, X"+ ... +ax+a,
* nis the degree of the polynomial

» Examples:
f(x) =2x2-4x + 10 degree 2
fx) =6 degree 0
LT Polynomials in

Matlab

» Represented by a row vector in which the
elements are the coefficients.

» Must include all coefficients, even if O
» Examples

8x+5 p=[85]

6x2-150 h=[60 -150]

N1 Value of a

Polynomial
 Recall that we can compute the value of a
polynomial for any value of x directly.
e Ex: f(x)=5x%+6x%2-7x+3

X=2;
y=6*x"3+6*x"2)-(7*xX)+3
y:

53
ML Value of a

Polynomial

» Matlab can also compute the value of a
polynomial at point x using a function,
which is sometimes more convenient

* polyval (p, X)

— p is a vector with the coefficients of the
polynomial
— X is a number, variable or expression

NLT Value of a
polynomial
o Ex: f(x)=5x3+6x2-7x+3
pP=[56-73]
X =2,
y = polyval(p, x)
y:

53

N1 Roots of a

Polynomial

 Recall that the roots of a polynomial are
the values of the argument for which the
polynomial is equal to zero

* Ex: f(x)=x2-2x-3
0=x2-2x-3
0=(x+1)x-3)

O0=x+1 OR 0=x-3
x=-1 x=3

ML Roots of a
Polynomial
» Matlab can compute the roots of a function

* r=roots(p)
— p is arow vector with the coefficients of the

polynomial
—ris a column vector with the roots of the
polynomial
LT Roots of a

Polynomial
« Ex: f(x)=x2-2x-3

p=[1-2-3];
r = roots(p)
r -

3.0000

-1.0000

NLT Polynomial
Coefficients

 Given the roots of a polynomial, the
polynomial itself can be calculated

* Ex: roots = -3, +2
X=-3 OR x=2
0=x+3 O0=x-
0=(x+3)(x-2)
fx)=x2+x-6

2

NLT POIynomial
Coefficients
 Given the roots of a polynomial, Matlab
can compute the coefficients
* p = poly(r)
—ris arow or column vector with the roots of
the polynomial
— pis a row vector with the coefficients

LT Polynomial

Coefficients
e EXx: roots = -3, +2

r=[-3+2
p = poly(r)
p =
1 1 -6

% f(x) =x2+x -6

Adding and Subtracting
Polynomials

« Polynomials can be added or subtracted

o« Ex: f1(x) + f2(X)

f1(x) = 3x® + 15x5 - 10x® - 3x2 +15x - 40

f2(x) = 33 -2Xx- 6
3x6+165x5 - 7x®-3x2+13x - 46

Adding and Subtracting
Polynomials

e Can do this in Matlab by just adding or
subtracting the coefficient vectors

— Both vectors must be of the same size, so the
shorter vector must be padded with zeros

Adding and Subtracting

Polynomials

Ex:
f1(x) = 3x8 + 15x5 - 10x3 - 3x2 +15x - 40
f2(x) =3x3-2x-6
pl=[3150-10 -3 15 -40];
p2=[0 0 0 30-2-6];
p = pl+p2
p -

3 15 0 -7 -3 13 -46
%f(x) = 3x5 + 15x5 -7x3 -3x2 +13x -46

Multiplying Polynomials

» Polynomials can be multiplied:
e EX: 2X2+x-3)*(x+1)=

2x3 4 x2 - 3x
+ 2x2+ x -3
2x3 +3x2-2x -3

Multiplying Polynomials

» Matlab can also multiply polynomials
* c=conv(a, b)
—a and b are the vectors of the coefficients of
the functions being multiplied

— c is the vector of the coefficients of the
product

Multiplying Polynomials
¢ Ex (2x%+x-3)* (x + 1)

a=[21-3]
b=[11];
¢ = conv(a, b)
c=
2 3 -2 3

% 2x3 + 3x2-2x -3

MNLT

Dividing Polynomials
 Recall that polynomials can also be
divided
x-10

X+ 1|x?-9x-10

X2- X
-10x -10
-10x -10

0

b Dividing Polynomials
» Matlab can also divide polynomials
* [q,] = deconv(u, V)
— u is the coefficient vector of the numerator
— v is the coefficient vector of the denominator
— g is the coefficient vector of the quotient
—r is the coefficient vector of the remainder

NILL Dividing Polynomials

* ExX (X?-9x-10) +(x +1)

u=J[1-9-10];
v=[11]

[q, r] = deconv(u, v)
q =

1 -10 % quotientis (x - 10)
r=
0 O O % remainderisO

= Example 1

» Write a program to calculate when an object
thrown straight up will hit the ground. The
equation is
s(t) = 44gt? +vt + h,

s is the position at time t (a position of zero
means that the object has hit the ground)

g is the acceleration of gravity: 9.8m/s2

Vv, is the initial velocity in m/s

hgis the initial height in meters (ground level is O,

a positive height means that the object was
thrown from a raised platform)

o — Example 1

Prompt for and read in initial velocity
Prompt for and read in initial height
Find the roots of the equation
Solution is the positive root

Display solution

o — Example 1

v = input('Please enter initial velocity: ');
h = input('Please enter initial height: *);
x = [-4.9 v h];
y = roots(x);
ify(1)>=0
fprintf(‘'The object will hit the ground in %.2f seconds\n',
y(1)
else
fprintf('The object will hit the ground in %.2f seconds\n',
¥(2))

end

= Example 1

Please enter initial velocity: 19.6
Please enter initial height: 58.8

The object will hit the ground in 6.00
seconds

N LT Derivatives of
Polynomials

» We can take the derivative of polynomials
f(x) =3x2-2x + 4

dy =6x -2
dx

LT Derivatives of
Polynomials

» Matlab can also calculate the derivatives
of polynomials

e k = polyder(p)
p is the coefficient vector of the polynomial
k is the coefficient vector of the derivative

NLT Derivatives of

Polynomials
e Ex: f(X)=3x%2-2x+4

p=[3-24]
k = polyder(p)
k=
6 -2
% dy/dx =6x -2

=1 [ntegrals of Polynomials

e ?6x2dx =6 ?x2dx
=6*?x3
=2x3

LT Integrals of
Polynomials
» Matlab can also calculate the integral of a
polynomial
g = polyint(h, k)
h is the coefficient vector of the polynomial
g is the coefficient vector of the integral

k is the constant of integration - assumed
to be 0 if not present

10

N LT Integration of
Polynomials

* ?26x2dx
h=[600];
g = polyint(h)
g =

2 0 0 O
% g(x) = 2x2

Polynomial Curve Fitting

« Curve fitting is fitting a function to a set of
data points

* That function can then be used for various
mathematical analyses

« Curve fitting can be tricky, as there are
many possible functions and coefficients

ML Curve Fitting

« Polynomial curve fitting uses the method
of least squares
— Determine the difference between each data
point and the point on the curve being fitted,
called the residual

— Minimize the sum of the squares of all of the
residuals to determine the best fit

11

Curve Fitting

* A best-fit curve may not pass through any
actual data points

« A high-order polynomial may pass through

all the points, but the line may deviate
from the trend of the data

¥ ignar 1
Bla 8 g

e

s W |

p———
=i DE

=

bl

12

NIL1 Matlab Curve Fitting

» Matlab provides an excellent polynomial
curve fitting interface

« First, plot the data that you want to fit
t=[0.00.51.0152.0253.0354.04.55.0];

w = [6.00 4.83 3.70 3.15 2.41 1.83 1.49 1.21 0.96 0.73
0.64];

plot(t, w)
» Choose Tools/Basic Fitting from the menu
on the top of the plot

Fle Edt Wew It Tock Deskdo

D& k&R

13

e Matlab Curve Fitting
» Choose a fit

— it will be displayed on the plot

— the numerical results will show the equation
and the coefficients

—the norm of residuals is a measure of the
quality of the fit. A smaller residual is a better

fit.
» Repeat until you find the curve with the
best fit
o Linear Fit
e Linear Fit
[T
= = =

14

8th Degree Polynomial

B G g e [g s pe
Do b mARST R S OE

I Y

1

4 |

! I

1 {

i e | L] "

\\\\\
pee polynamial -

Caerncient:

o narm of residuals
-~

Cosrricienca:
Bl 6. 0073385
o

[Plct resicdust=

o.om1zaa
Bar piot ~ ~
Sueplct ~

Save to warkepace ..
[] Shewe norm of residuals [=aveio vworkopace...]

el Cloze £ —>

o — Example 2

« Find the parabola that best fits the data
points (-1, 10) (0, 6) (1, 2) (2, 1) (3, 0)
4,2)(5,4) and (6, 7)

» The equation for a parabola is

f(x)=ax?2+bx + a

15

Example 2

X=[1,0,1,2 3 4,5,6];
Y=[10, 6,2, 1,0, 2, 4, 7];

plot (X, Y)
L1
MWL

16

o Other curves

« All previous examples use polynomial
curves. However, the best fit curve may
also be power, exponential, logarithmic or
reciprocal

 See your textbook for information on fitting
data to these types of curves

o — Interpolation

« Interpolation is estimating values between
data points

» Simplest way is to assume a line between
each pair of points

» Can also assume a quadratic or cubic
polynomial curve connects each pair of
points

o — Interpolation

* yi = interpl(x, y, xi, 'method’)

interpl - last character is one

X is vector with x points

y is a vector with y points

Xi is the x coordinate of the point to be
interpolated

yi is the y coordinate of the point being
interpolated

17

o Interpolation

» method is optional:
'nearest' - returns y value of the data point that
is nearest to the interpolated x point
'linear' - assume linear curve between each two
points (default)
'spline' - assumes a cubic curve between each
two points

o — Interpolation

* Example:
x=[012345];
y=[1.0-0.6-1.43.2-0.7 -6.4];
yi =interpl(x, y, 1.5, 'linear")

yi=

-1
yj = interp1(x, y, 1.5, 'spline’)
yi=

-1.7817

18

