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Polynomials in Matlab

Polynomials

• f(x) = anxn + an-1xn-1 + ... + a1x + a0

• n is the degree of the polynomial
• Examples:

f(x) = 2x2 - 4x + 10 degree 2
f(x) = 6 degree 0

Polynomials in 
Matlab

• Represented by a row vector in which the 
elements are the coefficients.  

• Must include all coefficients, even if 0
• Examples

8x + 5 p = [8 5]
6x2 - 150 h = [6 0 -150]
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Value of a 
Polynomial

• Recall that we can compute the value of a 
polynomial for any value of x directly.

• Ex:  f(x) = 5x3 + 6x2 - 7x + 3

x = 2;
y = (5 * x ^ 3) + (6 * x ^ 2) - (7 * x) + 3
y = 

53

Value of a 
Polynomial

• Matlab can also compute the value of a 
polynomial at point x using a function, 
which is sometimes more convenient

• polyval (p, x)
– p is a vector with the coefficients of the 

polynomial
– x is a number, variable or expression

Value of a 
polynomial

• Ex:  f(x) = 5x3 + 6x2 - 7x + 3

p = [5 6 -7 3];
x = 2;
y = polyval(p, x)
y = 

53
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Roots of a 
Polynomial

• Recall that the roots of a polynomial are 
the values of the argument for which the 
polynomial is equal to zero

• Ex:  f(x) = x2 - 2x -3
0 = x2 - 2x -3
0 = (x + 1)(x - 3)
0 = x + 1 OR    0 = x - 3
x = -1                     x = 3 

Roots of a 
Polynomial

• Matlab can compute the roots of a function
• r = roots(p)

– p is a row vector with the coefficients of the 
polynomial

– r is a column vector with the roots of the 
polynomial

Roots of a 
Polynomial

• Ex:  f(x) = x2 - 2x -3

p = [1 -2 -3];
r = roots(p)
r =

3.0000
-1.0000
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Polynomial 
Coefficients

• Given the roots of a polynomial, the 
polynomial itself can be calculated

• Ex:  roots = -3, +2
x = -3 OR   x = 2
0 = x + 3 0 = x - 2
0 = (x + 3)(x - 2)
f(x) = x2 + x - 6

Polynomial 
Coefficients

• Given the roots of a polynomial, Matlab
can compute the coefficients

• p = poly(r)
– r is a row or column vector with the roots of 

the polynomial
– p is a row vector with the coefficients

Polynomial 
Coefficients

• Ex:  roots = -3, +2

r = [-3 +2];
p = poly(r)
p =

1     1    -6
% f(x) = x2 + x -6



5

Adding and Subtracting 
Polynomials

• Polynomials can be added or subtracted
• Ex:   f1(x) + f2(x)  
f1(x) = 3x 6 + 15x 5 - 10x3 - 3x2 +15x - 40
f2(x) =  3x3 - 2x - 6

3x6 + 15x5 - 7x3 -3x2 +13x - 46

Adding and Subtracting 
Polynomials

• Can do this in Matlab by just adding or 
subtracting the coefficient vectors
– Both vectors must be of the same size, so the 

shorter vector must be padded with zeros

Adding and Subtracting 
Polynomials

Ex:  
f1(x) = 3x6 + 15x5 - 10x3 - 3x2 +15x - 40
f2(x) = 3x3 - 2x - 6
p1 = [3 15 0 -10 -3 15 -40];
p2 = [0  0  0  3 0 -2 -6];
p = p1+p2
p =

3    15     0    -7    -3    13   -46
%f(x) = 3x6 + 15x5 -7x3 -3x2 +13x -46
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Multiplying Polynomials

• Polynomials can be multiplied:
• Ex:  (2x 2 + x -3) * (x + 1) = 

2x3 + x2 - 3x
+ 2x2 + x  -3

2x3 +3x2 -2x -3

Multiplying Polynomials

• Matlab can also multiply polynomials
• c = conv(a, b)

– a and b are the vectors of the coefficients of 
the functions being multiplied

– c is the vector of the coefficients of the 
product

Multiplying Polynomials

• Ex:  (2x 2 + x -3) * (x + 1)
a = [2 1 -3];
b = [1 1];
c = conv(a, b)
c =

2     3    -2    -3
% 2x3 + 3x2 -2x -3
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Dividing Polynomials

• Recall that polynomials can also be 
divided

x -10
x + 1  x2 - 9x - 10

-x2 - x
-10x -10
-10x -10

0 

Dividing Polynomials

• Matlab can also divide polynomials
• [q,r] = deconv(u, v)

– u is the coefficient vector of the numerator
– v is the coefficient vector of the denominator
– q is the coefficient vector of the quotient
– r  is the coefficient vector of the remainder

Dividing Polynomials

• Ex:  (x2 - 9x -10) ÷ (x + 1)
u = [1 -9 -10];
v = [1 1];
[q, r] = deconv(u, v)
q =

1   -10     %  quotient is (x - 10)
r =

0     0     0   % remainder is 0
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Example 1

• Write a program to calculate when an object 
thrown straight up will hit the ground.  The 
equation is
s(t) = -½gt2 +v0t + h0

s is the position at time t (a position of zero 
means that the object has hit the ground)
g is the acceleration of gravity: 9.8m/s2

v0 is the initial velocity in m/s
h0is the initial height in meters (ground level is 0, 
a positive height means that the object was 
thrown from a raised platform)

Example 1

Prompt for and read in initial velocity
Prompt for and read in initial height
Find the roots of the equation
Solution is the positive root
Display solution

Example 1

v = input('Please enter initial velocity:  ');
h = input('Please enter initial height:  ');
x = [-4.9 v h];
y = roots(x);
if y(1) >= 0

fprintf('The object will hit the ground in %.2f seconds\n', 
y(1))

else
fprintf('The object will hit the ground in %.2f seconds\n', 

y(2))
end
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Example 1

Please enter initial velocity:  19.6
Please enter initial height:  58.8
The object will hit the ground in 6.00 

seconds 

Derivatives of 
Polynomials

• We can take the derivative of polynomials

f(x) = 3x2 -2x + 4
dy = 6x - 2
dx

Derivatives of 
Polynomials

• Matlab can also calculate the derivatives 
of polynomials

• k = polyder(p)
p is the coefficient vector of the polynomial
k is the coefficient vector of the derivative
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Derivatives of 
Polynomials

• Ex:  f(x) = 3x2 - 2x + 4

p = [3 -2 4];
k = polyder(p)
k =

6    -2
% dy/dx = 6x - 2

Integrals of Polynomials

• ?6x2 dx = 6 ?x2 dx
= 6 * ? x3

= 2 x3

Integrals of 
Polynomials

• Matlab can also calculate the integral of a 
polynomial
g = polyint(h, k)
h is the coefficient vector of the polynomial
g is the coefficient vector of the integral
k is the constant of integration - assumed 

to be 0 if not present
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Integration of 
Polynomials

• ?6x2 dx
h = [6 0 0];
g = polyint(h)
g =

2     0     0     0
% g(x) = 2x3

Polynomial Curve Fitting

• Curve fitting is fitting a function to a set of 
data points

• That function can then be used for various 
mathematical analyses

• Curve fitting can be tricky, as there are 
many possible functions and coefficients

Curve Fitting

• Polynomial curve fitting uses the method 
of least squares
– Determine the difference between each data 

point and the point on the curve being fitted, 
called the residual

– Minimize the sum of the squares of all of the 
residuals to determine the best fit
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Curve Fitting

• A best-fit curve may not pass through any 
actual data points

• A high-order polynomial may pass through 
all the points, but the line may deviate 
from the trend of the data
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Matlab Curve Fitting

• Matlab provides an excellent polynomial 
curve fitting interface

• First, plot the data that you want to fit
t = [0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0];

w = [6.00 4.83 3.70 3.15 2.41 1.83 1.49 1.21 0.96 0.73 
0.64];
plot(t, w)

• Choose Tools/Basic Fitting from the menu 
on the top of the plot
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Matlab Curve Fitting

• Choose a fit 
– it will be displayed on the plot
– the numerical results will show the equation 

and the coefficients
– the norm of residuals is a measure of the 

quality of the fit.  A smaller residual is a better 
fit.

• Repeat until you find the curve with the 
best fit

Linear Fit

Linear Fit
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8th Degree Polynomial

8th Degree Polynomial

Example 2

• Find the parabola that best fits the data 
points (-1, 10) (0, 6) (1, 2) (2, 1) (3, 0) 
(4, 2) (5, 4) and (6, 7)

• The equation for a parabola is 
f(x) = ax2 + bx + a
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Example 2

X = [-1, 0, 1, 2, 3, 4, 5, 6];
Y= [10, 6, 2, 1, 0, 2, 4, 7];
plot (X, Y)
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Other curves

• All previous examples use polynomial 
curves.  However, the best fit curve may 
also be power, exponential, logarithmic or 
reciprocal

• See your textbook for information on fitting 
data to these types of curves

Interpolation

• Interpolation is estimating values between 
data points

• Simplest way is to assume a line between 
each pair of points

• Can also assume a quadratic or cubic 
polynomial curve connects each pair of 
points

Interpolation

• yi = interp1(x, y, xi, 'method')
interp1 - last character is one
x is vector with x points
y is a vector with y points
xi is the x coordinate of the point to be 

interpolated
yi is the y coordinate of the point being 

interpolated
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Interpolation

• method is optional:
'nearest' - returns y value of the data point that 

is nearest to the interpolated x point
'linear' - assume linear curve between each two 

points (default)
'spline' - assumes a cubic curve between each 

two points

Interpolation

• Example:  
x = [0 1 2 3 4 5];
y = [1.0 -0.6 -1.4 3.2 -0.7 -6.4];
yi = interp1(x, y, 1.5, 'linear')
yi =

-1
yj = interp1(x, y, 1.5, 'spline')
yj =

-1.7817


