
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

N1II
Polynomials \qquad

- $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ \qquad
- n is the degree of the polynomial
- Examples:
\qquad
$f(x)=2 x^{2}-4 x+10 \quad$ degree 2 \qquad
$f(x)=6$ degree 0
\qquad
\qquad
\qquad

N1II

Polynomials in Matlab

- Represented by a row vector in which the \qquad elements are the coefficients.
- Must include all coefficients, even if 0 \qquad
- Examples \qquad
$8 x+5 \quad p=[85]$
$6 x^{2}-150 \quad h=\left[\begin{array}{lll}6 & 0 & -150\end{array}\right]$ \qquad
\qquad
\qquad

NHII
 Value of a Polynomial

- Recall that we can compute the value of a \qquad polynomial for any value of x directly.
- Ex: $f(x)=5 x^{3}+6 x^{2}-7 x+3$ \qquad
$x=2$;
$y=\left(5^{*} x^{\wedge} 3\right)+\left(6^{*} x^{\wedge} 2\right)-\left(7^{*} x\right)+3$
$y=$
53 \qquad
\qquad

NHII

Value of a

Polynomial

- Matlab can also compute the value of a \qquad polynomial at point x using a function, which is sometimes more convenient \qquad
- polyval (p, x)
$-p$ is a vector with the coefficients of the
\qquad polynomial
$-x$ is a number, variable or expression \qquad
\qquad
\qquad

N 11 I

Value of a
 polynomial

- Ex: $f(x)=5 x^{3}+6 x^{2}-7 x+3$ \qquad
$\mathrm{p}=\left[\begin{array}{lll}5 & 6 & -7\end{array}\right]$; \qquad
x = 2;
$y=\operatorname{polyval}(p, x)$
$y=$
53
\qquad
\qquad
\qquad
- Recall that the roots of a polynomial are \qquad the values of the argument for which the polynomial is equal to zero
- Ex: $f(x)=x^{2}-2 x-3$
$0=x^{2}-2 x-3$
$0=(x+1)(x-3)$
$0=x+1 \quad$ OR $\quad 0=x-3$
$x=-1 \quad x=3$ \qquad
\qquad

NHII

Roots of a

 Polynomial- Matlab can compute the roots of a function \qquad
- $r=\operatorname{roots}(p)$
$-p$ is a row vector with the coefficients of the
\qquad polynomial
$-r$ is a column vector with the roots of the polynomial
\qquad
\qquad
\qquad
\qquad

```
NHII
```

Roots of a Polynomial

- $E x: f(x)=x^{2}-2 x-3$
$p=\left[\begin{array}{ll}1 & -2 \\ -3\end{array}\right] ;$
$r=\operatorname{roots}(p)$
$r=$
3.0000 \qquad
-1.0000

Polynomial Coefficients

- Given the roots of a polynomial, the \qquad polynomial itself can be calculated
- Ex: roots $=-3,+2$
$x=-3 \quad$ OR $x=2$
$0=x+3 \quad 0=x-2$
$0=(x+3)(x-2)$ \qquad
$f(x)=x^{2}+x-6$
\qquad
\qquad

NHII
Polynomial \qquad Coefficients

- Given the roots of a polynomial, Matlab \qquad can compute the coefficients
- $p=p o l y(r)$
$-r$ is a row or column vector with the roots of the polynomial
\qquad
$-p$ is a row vector with the coefficients
\qquad
\qquad
\qquad
- Ex: roots = -3, +2 \qquad
$r=[-3+2] ;$
$p=\operatorname{poly}(r)$
$p=$
$1 \quad 1 \quad-6$ \qquad
$\% f(x)=x^{2}+x-6$
\qquad
\qquad

NuI Adding and Subtracting Polynomials

- Polynomials can be added or subtracted
\qquad
- Ex: $\mathrm{f} 1(\mathrm{x})+\mathrm{f} 2(\mathrm{x})$
$f 1(x)=3 x^{6}+15 x^{5}-10 x^{3}-3 x^{2}+15 x-40$
$\mathrm{f} 2(\mathrm{x})=\frac{3 \mathrm{x}^{3}-2 \mathrm{x}-6}{3 \mathrm{x}^{6}+15 \mathrm{x}^{5}-7 \mathrm{x}^{3}-3 \mathrm{x}^{2}+13 x-46}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

N上I Adding and Subtracting Polynomials

- Can do this in Matlab by just adding or subtracting the coefficient vectors
- Both vectors must be of the same size, so the shorter vector must be padded with zeros

```
    Nix Adding and Subtracting
            Polynomials
Ex:
f1(x)=3x
f2(x) = 3x 3}-2x-
p1 = [3 15 0-10-3 15-40];
p2 = [000 0 3 0-2 -6];
p = p1+p2
p=
    3
%f(x)=3x6+15x5-7x - 3x + +13x-46
```


N1II Multiplying Polynomials

\qquad

- Polynomials can be multiplied:
- Ex: $\left(2 x^{2}+x-3\right)^{*}(x+1)=$

$$
\begin{gathered}
2 x^{3}+x^{2}-3 x \\
+\quad 2 x^{2}+x-3 \\
\hline 2 x^{3}+3 x^{2}-2 x-3
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

NII Multiplying Polynomials

\qquad

- Matlab can also multiply polynomials
- c = $\operatorname{conv}(a, b)$
- a and b are the vectors of the coefficients of the functions being multiplied
$-c$ is the vector of the coefficients of the product
\qquad
\qquad
\qquad
\qquad
\qquad

N1I Multiplying Polynomials \qquad

- Ex: $\left(2 x^{2}+x-3\right) *(x+1)$ \qquad
a = [2 1 -3];
b = [lll 11 ;
$\mathrm{c}=\operatorname{conv}(\mathrm{a}, \mathrm{b})$
$\mathrm{C}=$
$\begin{array}{llll}2 & 3 & -2 & -3\end{array}$
$\% 2 x^{3}+3 x^{2}-2 x-3$
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

NII Dividing Polynomials

\qquad

- Matlab can also divide polynomials \qquad
- $[q, 1]=\operatorname{deconv}(u, v)$
$-u$ is the coefficient vector of the numerator
\qquad
$-v$ is the coefficient vector of the denominator
$-q$ is the coefficient vector of the quotient
\qquad
$-r$ is the coefficient vector of the remainder \qquad
\qquad
\qquad

N1I Dividing Polynomials \qquad

- Ex: $\left(x^{2}-9 x-10\right) \div(x+1)$ \qquad
$u=[1-9-10] ;$
$\mathrm{v}=\left[\begin{array}{ll}1 & 1\end{array}\right]$;
$[\mathrm{q}, \mathrm{r}]=\operatorname{deconv}(\mathrm{u}, \mathrm{v})$
$q=$
$1-10$ \% quotient is ($\mathrm{x}-10$)
$r=$
$0 \quad 0 \quad 0 \%$ remainder is 0
\qquad
\qquad
\qquad
\qquad
\qquad

Example 1

- Write a program to calculate when an object thrown straight up will hit the ground. The equation is $\mathrm{s}(\mathrm{t})=-1 / 2 \mathrm{gt}{ }^{2}+\mathrm{v}_{0} \mathrm{t}+\mathrm{h}_{0}$ s is the position at time t (a position of zero means that the object has hit the ground)
g is the acceleration of gravity: $9.8 \mathrm{~m} / \mathrm{s}^{2}$
v_{0} is the initial velocity in m / s
h_{0} is the initial height in meters (ground level is 0 ,
\qquad
\qquad thrown from a raised platform

NIII

Example 1

\qquad
Prompt for and read in initial velocity
\qquad Prompt for and read in initial height Find the roots of the equation
\qquad Solution is the positive root \qquad Display solution
\qquad
\qquad
\qquad

N 11 IT

Example 1

\qquad
$\mathrm{v}=$ input('Please enter initial velocity: '); \qquad
$\mathrm{h}=\operatorname{input}($ 'Please enter initial height: ');
\qquad
$x=[-4.9 \mathrm{~h}]$;
$y=\operatorname{roots}(x)$;
if $y(1)>=0$
fprintf('The object will hit the ground in \%.2f seconds $\backslash n$ ', \qquad $y(1))$
else
fprintf('The object will hit the ground in \%.2f seconds $\backslash n$ ',
\qquad $\mathrm{y}(2))$ \qquad
\qquad

Please enter initial velocity: 19.6 \qquad
Please enter initial height: 58.8
The object will hit the ground in 6.00 seconds
\qquad
\qquad
\qquad
\qquad
\qquad

NIII

Derivatives of Polynomials

- We can take the derivative of polynomials
$f(x)=3 x^{2}-2 x+4$ \qquad
$d y=6 x-2$
$d x$ \qquad
\qquad
\qquad

NHI
 Derivatives of Polynomials

- Matlab can also calculate the derivatives of polynomials \qquad
- $\mathrm{k}=\operatorname{polyder}(\mathrm{p})$
p is the coefficient vector of the polynomial
\qquad k is the coefficient vector of the derivative

\qquad
\qquad
$\mathrm{p}=[3-24]$;
\qquad
$\mathrm{k}=\operatorname{polyder}(\mathrm{p})$
$\mathrm{k}=$
\qquad
\qquad
\qquad
\qquad

N1II Integrals of Polynomials \qquad

- ? $6 x^{2} d x=6 ? x^{2} d x$ \qquad

$$
=6{ }^{*} ? x^{3}
$$

$$
=2 x^{3}
$$

\qquad
\qquad
\qquad
\qquad

N1I

Integrals of
 Polynomials

- Matlab can also calculate the integral of a \qquad polynomial
$\mathrm{g}=\operatorname{polyint}(\mathrm{h}, \mathrm{k})$
h is the coefficient vector of the polynomial
\qquad g is the coefficient vector of the integral k is the constant of integration - assumed \qquad to be 0 if not present
\qquad
\qquad

N川II	Integration of Polynomials
$\begin{aligned} & \text { ? } 6 x^{2} d x \\ & \mathrm{~h}=\left[\begin{array}{lll} 6 & 0 & 0 \end{array}\right] \\ & \mathrm{g}=\mathrm{polyint}(\mathrm{~h}) \\ & \mathrm{g}= \\ & 2 \quad 0 \quad 0 \\ & \% \mathrm{~g}(\mathrm{x})=2 \mathrm{x}^{3} \end{aligned}$	0

\qquad
\qquad
\qquad
h = [6000; \qquad
= \qquad
\qquad
\qquad

N上I Polynomial Curve Fitting

\qquad

Curve fitting is fitting a function to a set of data points \qquad

- That function can then be used for various mathematical analyses
- Curve fitting can be tricky, as there are many possible functions and coefficients

N11I

Curve Fitting

\qquad

- Polynomial curve fitting uses the method \qquad of least squares
- Determine the difference between each data \qquad point and the point on the curve being fitted, called the residual
- Minimize the sum of the squares of all of the residuals to determine the best fit \qquad
\qquad
\qquad

Curve Fitting

- A best-fit curve may not pass through any actual data points
- A high-order polynomial may pass through all the points, but the line may deviate from the trend of the data

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

N1II \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

N LII
 Matlab Curve Fitting

- Matlab provides an excellent polynomial curve fitting interface
- First, plot the data that you want to fit $t=\left[\begin{array}{lll}0.0 & 0.5 & 1.0 \\ 1.5 & 2.0 & 2.53 .03 .54 .04 .5 \text { 5.0]; }\end{array}\right.$ $\mathrm{w}=\left[\begin{array}{lll}6.00 & 4.83 & 3.703 .152 .41 \\ 1.83 & 1.491 .210 .960 .73\end{array}\right.$ 0.64];
plot(t, w)
\qquad

Choose Tools/Basic Fitting from the menu on the top of the plot \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

NHII
 Matlab Curve Fitting

- Choose a fit
- it will be displayed on the plot
- the numerical results will show the equation and the coefficients
- the norm of residuals is a measure of the quality of the fit. A smaller residual is a better fit.
- Repeat until you find the curve with the best fit
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Basic Fiting - 1	$\underline{-1]}$ [\times]
Select ciata: siata $1 / \sim \mid$$\square$ Center and seale \times deate	
Plot the Numerical reauts	
Cheok to display fits on Tigur	Fit: ath dearee pol
Shape-proserving interpolar	Coorricionta and norm of
Ine	coorncientis ana norm
\square^{\square} cubic	cricienta:
$\square{ }^{\square} 4$ th degree polymomial	${ }^{p 1}{ }_{\text {p2 }}=-0.0073383$
$\square{ }^{\text {Sthen dearee polynomial }}$	${ }_{\text {p }}{ }^{\text {p }}$ - - -1.12822
$\square 7 \mathrm{Tm}$ degree polynomial	p4 - 5.6772
- ${ }^{\text {ath degreo polymomial }}$	
\square 10th degree polynomial	
Significant cligita: \qquad	
\square Plot residuals	Norm or restduals
Bar plot \sim	\sim
Subplot \square show norm of residuals	Save to workapace...
Molp Close	$\leftarrow \square \rightarrow$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

N 11 I

Example 2

\qquad

- Find the parabola that best fits the data \qquad points $(-1,10)(0,6)(1,2)(2,1)(3,0)$ $(4,2)(5,4)$ and $(6,7)$
\qquad
- The equation for a parabola is \qquad
$f(x)=a x^{2}+b x+a$
\qquad
\qquad
\qquad
$Y=[10,6,2,1,0,2,4,7] ;$
plot (X, Y)
\qquad

NHII

\qquad

\qquad
\qquad
\qquad \square \qquad

\qquad

- All previous examples use polynomial \qquad curves. However, the best fit curve may also be power, exponential, logarithmic or \qquad reciprocal
- See your textbook for information on fitting data to these types of curves

NHII

Interpolation

\qquad

- Interpolation is estimating values between \qquad data points
- Simplest way is to assume a line between
\qquad each pair of points
- Can also assume a quadratic or cubic polynomial curve connects each pair of points
\qquad
\qquad

N以I

Interpolation

\qquad

- yi = interp1 (x, y y xi , 'method') \qquad
interp1-last character is one
x is vector with x points
\qquad y is a vector with y points \qquad
$x i$ is the x coordinate of the point to be interpolated \qquad
yi is the y coordinate of the point being interpolated

NIII
- method is optional:
'nearest' - returns y value of the data point that
is nearest to the interpolated x point
'linear' - assume linear curve between each two
points (default)
'spline' - assumes a cubic curve between each
two points

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

N LII

Interpolation

\qquad

- Example: \qquad
x = [0 12234 5];
$y=[1.0-0.6-1.43 .2-0.7-6.4] ;$ \qquad
yi = interp1 ($x, y, 1.5$, 'linear')
yi $=$ \qquad
-1
$y j=\operatorname{interp1}(x, y, 1.5$, 'spline')
yj $=$
-1.7817 \qquad
\qquad

